Evaluating the performance of a successive-approximations approach to parameter optimization in maximum-likelihood phylogeny estimation.
نویسندگان
چکیده
Almost all studies that estimate phylogenies from DNA sequence data under the maximum-likelihood (ML) criterion employ an approximate approach. Most commonly, model parameters are estimated on some initial phylogenetic estimate derived using a rapid method (neighbor-joining or parsimony). Parameters are then held constant during a tree search, and ideally, the procedure is repeated until convergence is achieved. However, the effectiveness of this approximation has not been formally assessed, in part because doing so requires computationally intensive, full-optimization analyses. Here, we report both indirect and direct evaluations of the effectiveness of successive approximations. We obtained an indirect evaluation by comparing the results of replicate runs on real data that use random trees to provide initial parameter estimates. For six real data sets taken from the literature, all replicate iterative searches converged to the same joint estimates of topology and model parameters, suggesting that the approximation is not starting-point dependent, as long as the heuristic searches of tree space are rigorous. We conducted a more direct assessment using simulations in which we compared the accuracy of phylogenies estimated using full optimization of all model parameters on each tree evaluated to the accuracy of trees estimated via successive approximations. There is no significant difference between the accuracy of the approximation searches relative to full-optimization searches. Our results demonstrate that successive approximation is reliable and provide reassurance that this much faster approach is safe to use for ML estimation of topology.
منابع مشابه
Evaluation of estimation methods for parameters of the probability functions in tree diameter distribution modeling
One of the most commonly used statistical models for characterizing the variations of tree diameter at breast height is Weibull distribution. The usual approach for estimating parameters of a statistical model is the maximum likelihood estimation (likelihood method). Usually, this works based on iterative algorithms such as Newton-Raphson. However, the efficiency of the likelihood method is not...
متن کاملAN OPTIMUM APPROACH TOWARDS SEISMIC FRAGILITY FUNCTION OF STRUCTURES THROUGH METAHEURISTIC HARMONY SEARCH ALGORITHM
Vulnerability assessment of structures encounter many uncertainties like seismic excitations intensity and response of structures. The most common approach adopted to deal with these uncertainties is vulnerability assessment through fragility functions. Fragility functions exhibit the probability of exceeding a state namely performance-level as a function of seismic intensity. A common approach...
متن کاملImproving the Performance of Bayesian Estimation Methods in Estimations of Shift Point and Comparison with MLE Approach
A Bayesian analysis is used to detect a change-point in a sequence of independent random variables from exponential distributions. In This paper, we try to estimate change point which occurs in any sequence of independent exponential observations. The Bayes estimators are derived for change point, the rate of exponential distribution before shift and the rate of exponential distribution after s...
متن کاملNon-Bayesian Estimation and Prediction under Weibull Interval Censored Data
In this paper, a one-sample point predictor of the random variable X is studied. X is the occurrence of an event in any successive visits $L_i$ and $R_i$ :i=1,2…,n (interval censoring). Our proposed method is based on finding the expected value of the conditional distribution of X given $L_i$ and $R_i$ (i=1,2…,n). To make the desired prediction, our approach is on the basis of approximating the...
متن کاملEvaluating the Performance of the Artificial Bee Colony Algorithm in Flood Frequency Analysis
Selection of the appropriate distribution function and estimation of its parameters are two fundamental steps in the accurate estimation of flood magnitude. This study relied on the concept of optimization by meta heuristic algorithms to improve the results obtained from the conventional methods of parameter estimation, such as maximum likelihood (ML), moments (MOM) and probability weighted mom...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular biology and evolution
دوره 22 6 شماره
صفحات -
تاریخ انتشار 2005